พันธะเคมีคือ แรงยึดเหนี่ยวที่อยู่ระหว่างอะตอมซึ่งทำให้อะตอมต่าง ๆ เข้ามาอยู่รวมกันเป็นโมเลกุลได้ การสร้างพันธะเคมีของอะตอมเกิดขึ้นได้ เนื่องจากอะตอมต้องการจะปรับตัวให้ตนเองมีเวเลนซ์อิเล็กตรอนครบ 8 หรือให้ใกล้เคียงกับการครบ 8 ให้มากที่สุด (ตามกฎออกเตต) ดังนั้นจึงต้องอาศัยอะตอมอื่น ๆ มาเป็นตัวช่วยให้อิเล็กตรอนเข้ามาเสริม หรือเป็นตัวรับเอาอิเล็กตรอนออกไป และจากความพยายามในการปรับตัวของอะตอมเช่นนี้เองที่ทำให้อะตอมมีการสร้างพันธะเคมีกับอะตอมอื่น ๆ
สัญลักษณ์แบบจุดของลิวอิสและกฎออกเตต
จากการศึกษาเรื่องอะตอมและสมบัติของธาตุทำให้ทราบว่า เวเลนซ์อิเล็กตรอนที่อยู่ในระดับพลังงานสูงสุดหรือชั้นนอกสุดของอะตอม ทั้งนี้การเกิดพันธะเคมีเกี่ยวข้องกับเวเลนซ์อิกเล็กตรอนของคู่อะตอมที่ร่วมสร้างพันธะกัน
เวเลนซ์อิเล็กตรอนของธาตุอาจแสดงด้วยจุด สัญลักษณ์ที่แสดงธาตุและเวเลนซ์อิเล็กตรอนของธาตุ เรียกว่า สัญลักษณ์แบบจุดของลิวอิส (Lewis dot symbol) ซึ่งเสนอโดยกิลเบิร์ต นิวตัน ลิวอิส โดยเขียนจุดเดี่ยวทั้ง 4 ด้านรอบสัญลักษณ์ของธาตุก่อน แล้วจึงเติมจุดให้เป็นคู่ (ยกเว้นธาตุฮีเลียมที่มี 2 เวเลนซ์อิเล็กตรอน จะเขียนเป็นจุดคู่ที่อยู่ด้านเดียวกัน)
นอกจากนี้นักเคมียังพบว่า อะตอมของธาตุอื่นๆ มีแนวโน้ม ที่จะรวมตัวกันเพื่อที่จะทำให้แต่ละเวเลนซ์อิเล็กตรอนเท่ากับ 8 จึงมีการสรุปเป็นหลักการที่เรียกว่า กฎออกเตต (Octet rule)
สารในธรรมชาติอาจปรากฎอยู่ในสถานะของแข็ง ของเหลว หรือแก๊ส เช่น เหล็ก ทองแดง เกลือแกง น้ำตาลทราย น้ำ แก๊สไฮโดรเจน สารเหล่านี้ประกอบด้วยอนุภาคขนาดเล็กในรูปของไอออน อะตอมหรือโมเลกุลจำนวนมากอยู่รวมกันเป็นกลุ่มก้อนและแสดงสมบัติเฉพาะตัว การทำให้สารเปลี่ยนแปลงจะต้องใช้พลังงานปริมาณหนึ่งซึ่งมาหรือน้อยขึ้นอยู่กับชนิดของสาร
เช่น การทำให้เหล็กหลอมเหลวต้องใช้อุณหภูมิสูงถึง 1535 องศาเซลเซียส การทำให้โซเดียมคลอไรด์หรือเกลือแกงหลอมเหลวต้องใช้อุณหภูมิสูงถึง 801 องศาเซลเซียส การสลายโมเลกุลของไฮโดรเจนให้เป็นอะตอมของไฮโดรเจนในสถานะแก๊สต้องใช้พลังงาน 436 กิโลจูลต่อโมล จากตัวอย่างดังกล่าวเป็นหลักฐานที่แสดงว่าม แรงยึดเหนี่ยวระหว่างอนุภาคของสาร
เช่น การทำให้เหล็กหลอมเหลวต้องใช้อุณหภูมิสูงถึง 1535 องศาเซลเซียส การทำให้โซเดียมคลอไรด์หรือเกลือแกงหลอมเหลวต้องใช้อุณหภูมิสูงถึง 801 องศาเซลเซียส การสลายโมเลกุลของไฮโดรเจนให้เป็นอะตอมของไฮโดรเจนในสถานะแก๊สต้องใช้พลังงาน 436 กิโลจูลต่อโมล จากตัวอย่างดังกล่าวเป็นหลักฐานที่แสดงว่าม แรงยึดเหนี่ยวระหว่างอนุภาคของสาร
แรงยึดเหนี่ยวระหว่างอนุภาคของสารอาจเป็นแรงยึดเหนี่ยวระหว่างอะตอมในก้อนโลหะ แรงยึดเหนี่ยวระหว่างไอออนในสารประกอบไอออนิกให้อยู่ร่วมกันเป็นผลึก หรือแรงยึดเหนี่ยวระหว่างอะตอมของธาตุให้อยู่รวมกันเป็นโมเลกุล
พันธะไอออนิก
โลหะเป็นอะตอมที่มีขนาดใหญ่ มีค่าพลังงานไอออไนเซชันต่ำ โลหะจึงเสียเวเลนซ์อิเล็กตรอนได้ง่าย ส่วนอโลหะเป็นอะตอมที่มีขนาดเล็ก มีค่าพลังงานไอออไนเซชันสูง อโลหะจึงเสียเวเลนซ์อิเล็กตรอนได้ยากกว่าโลหะ และโลหะกับอโลหะมีสมบัติบางประการที่คล้ายกัน และสารเหล่านี้มีแรงยึดเหนี่ยวระหว่างอนุภาคที่เหมือนกัน
การเกิดพันธะไอออนิก
นักวิทยาศาสตร์พบว่าแก๊สเฉื่อยสามารถอยู่เป็นอะตอมอิสระและมีเสถียรภาพสูง ธาตุหมู่นี้มีการจัดอิเล็กตรอนเป็น ns^2 np^6 ซึ่งมีเวเลนซ์อิเล็กตรอนเท่ากับ 8 ยกเว้นฮีเลียมมีเวเลนซ์อิเล็กตรอนเท่ากับ 2 ส่วนธาตุอื่นๆ มักทำปฏิกิริยากันเกิดเป็นสารประกอบเพื่อจะปรับให้มีเวเลนซ์อิเล็กตรอนเป็น 8 เท่ากับเวเลนซ์อิเล็กตรอนของแก๊สเฉื่อย แสดงว่าอะตอมที่มีจำนวนเวเลนซ์อิเล็กตรอนเท่ากับ 8 เป็นสภาพที่เสถียรที่สุด การที่อะตอมของธาตุต่างๆ รวมกันด้วยสัดส่วนที่ทำให้อะตอมมีเวเลนซ์อิเล็กตรอนเท่ากับ 8 นี้เรียกว่า กฎออกเตต การเกิดสารประกอบระหว่างอะตอมของโลหะจะมีลักษณะการรวมตัวอย่างไรศึกษาได้จากตัวอย่างการเกิดสารประกอบโซเดียมคลอไรด์และแคลเซียมฟลูออไรด์
เมื่อโลหะโซเดียมทำปฎิกิริยากับแก๊สคลอรีนจะเกิดการให้และรับอิเล็กตรอนระหว่างอะตอมทั้งสองเกิดเป็นโซเดียมไอออนกับคลอไรด์ไอออน ไอออนทั้งสองมีประจุไฟฟ้าต่างกันจึงยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้าเกิดเป็นพันธะไอออนิกแรงดึงดูดระหว่างโซเดียมไอออนกับคลอไรด์ไอออนเช่นนี้จะเกิดต่อเนื่องกันไปเป็นโครงผลึกขนาดใหญ่ และเรียกสารประกอบที่เกิดจากพันธะไอออนิกว่า สารประกอบไอออนิก
โครงสร้างของสารประกอบไอออนิก
สารประกอบไอออนิกที่ปรากฎอยู่ในสถานะของแข็งมีการจัดเรียงตัวของไอออนบวกและไอออนลบเกิดเป็นผลึกที่มีโครงสร้างหลากหลาย จากการศึกษาโซเดียมคลอไรด์ (NaCl) พบว่า Na+ และ CL- จัดเรียงสลับกันไปอย่างต่อเนื่องทั้งสามมิติโดยที่ Na+ แต่ละไอออนจะถูกล้อมรอบด้วย Cl- 6 ไอออนและ Cl- แต่ละไอออนจะถูกล้อมรอบด้วย Na+ 6 ไอออน (ดังรูป 2.1) โซเดียมคลอไรด์จึงมีอัตราส่วนอย่างต่ำของ Na+ กับ Cl- เป็น 1 : 1
โครงสร้างสารประกอบไอออนิก ชนิดอื่นๆ ก็จะมีไอออนบวกและไอออนลบล้อมรอบซึ่งกันและกันแต่อาจมีจำนวนแตกต่างกัน จะเป็นเท่าใดขึ้นอยู่กับสัดส่วนของจำนวนประจุ ขนาดของไอออนและโครงสร้างผลึก
สูตรเคมีและชื่อของสารประกอบไอออนิก
เราทราบแล้วว่าสารประกอบไอออนิกประกอบด้วยไอออนบวกกับไอออนลบยึดเหนี่ยวกันด้วยแรงดึงดูดระหว่างประจุไฟฟ้า ในการเขียนสูตรสารประกอบไอออนิกจึงต้องทราบว่าแต่ละธาตุที่ทำปฏิกิริยากันนั้นจะเกิดเป็นไอออนชนิดใด และมีจำนวนประจุเท่าใด ซึ่งพิจารณาได้จากการจัดอิเล็กตรอนของธาตุ ตัวอย่างไอออนของโลหะและอโลหะศึกษาได้จากรูป
พลังงานกับการเกิดสารประกอบไอออนิก
การเกิดปฏิกิริยาเคมีจะมีการเปลี่ยนแปลงพลังงานเกิดขึ้นด้วย นักเรียนคิดว่าเมื่อโลหะโซเดียมทำปฏิกิริยากับแก๊สคลอรีนเกิดเป็นโซเดียมคลอไรด์จะเกิดการเปลี่ยนแปลงพลังงานอย่างไร
การศึกษาการเปลี่ยนแปลงพลังงานในการเกิดสารประกอบไอออนิก วิธีการหนึ่งอาจพิจารณาจากวัฎจักรบอร์น-ฮาร์เบอร์ ซึ่งพัฒนาโดยแมกซ์ บอร์น และฟริตซ์ฮาเบอร์ โดยการตั้งสมมติฐานว่าการเกิดสารประกอบไอออนิกชนิดหนึ่งๆ มีหลายขั้น ในแต่ละขั้นจะมีการเปลี่ยนแปลงพลังงานเกิดขึ้นด้วย เราจะพิจารณาการเกิดโซเดียมคลอไรด์จากปฏิกิริยาระหว่างโลหะโซเดียมกับแก๊สคลอรีน ซึ่งมีขั้นตอนต่างๆ
1. การระเหิดของโซเดียม โลหะโซเดียมสถานะของแข็งระเหิดกลายเป็นอะตอมในสถานะแก๊ส ใช้พลังงาน 107 กิโลจูลต่อโมลของโซเดียมอะตอม เรียกพลังงานในขั้นนี้ว่า พลังงานการระเหิด
2. การสลายพันธะของแก๊สคลอรีน โมเลกุลของแก๊สใช้พลังงาน 122 กิโลจูลต่อโมลอะตอมของคลอรีน เรียกพลังงานในขั้นนี้ว่า พลังงานการสลายพันธะ
3. การแตกตัวเป็นไอออนของโซเดียม อะตอมของโซเดียมในสถานะแก๊สเสียอิเล็กตรอนออกไปกลายเป็น Na + ใช้พลังงาน 496 กิโลจูลต่อโมลอะตอมของโซเดียม เรียกพลังงานในขั้นนี้ว่า พลังงานไอออไนเซชัน
4. การเกิดคลอไรด์ไอออน อะตอมของคลอรีนในสถานะแก๊สรับอิเล็กตรอนที่หลุดออกจากอะตอมของโซเดียมกลายเป็น Cl- คายพลังงาน 349 กิโลจูลต่อโมลของคลอไรด์ไอออน
5. การเกิดโซเดียมคลอไรด์ โซเดียมไอออนกับคลอไรด์ไอออนในสถานะแก๊สรวมตัวกันเป็นผลึกโซเดียมคลอไรด์และคายพลังงานออกมา 787 กิโลจูลต่อโมลของโซเดียมคลอไรด์ เรียกพลังงานในขั้นนี้ว่า พลังงานโครงผลึกหรือพลังงานแลตทิซ
ปฏิกิริยาที่มีการดูดพลังงานมากกว่าพลังงานที่คายออกมาจัดเป็นปฏิกิริยาแบบดูดพลังงาน ค่า H จะมีเครื่องหมายเป็นบวก ในทางตรงข้ามปฏิกิริยาที่คายพลังงานมากกว่าพลังงานที่ดูดเข้าไปจัดเป็นปฏิกิริยาแบบคายพลังงาน ค่า H จะมีเครื่องหมายเป็นลบ
สมบัติของสารประกอบไอออนิก
สารประกอบไอออนิกประกอบด้วยไอออนบวกกับไอออนลบ เมื่อทุบผลึกของสารไอออนิกจะเกิดการเลื่อนไถลของไอออนไปตามระนาบผลึก เป็นผลให้ไอออนชนิดเดียวกันเลื่อนไปอยู่ตรงกัน จึงเกิดแรงผลักระหว่างไอออน ทำให้ผลึกแตกออก ดังรูป เราจึงสังเกตพบว่าสารไอออนิกเปราะและแตกได้ง่าย
พลังงานแลตทิซ คือพลังงานที่คายออกเมื่อไอออนบวกกับไอออนลบในสถานะแก๊สรวมตัวกันเกิดเป็นโครงผลึกส่วนการทำให้ไอออนบวกและไอออนลบในโครงผลึกหลุดออกมาเป็นกระบวนการย้อนกลับ จึงต้องใช้พลังงานเท่ากับพลังงานแลตทิซ
กระบวนการที่ไอออน + และ ไอออน - แยกออกจากโครงผลึกเป็นกระบวนการดูดพลังงานที่มีค่าเท่ากับพลังงานแลตทิช ส่วนกระบวนการที่โมเลกุลของน้ำล้อมรอบไอออนแต่ละชนิดเป็นกระบวนการคายพลังงานที่เรียกว่า พลังงานไฮเดรชัน (Hydration Energy)
สมการไอออนิกและสมการไอออนิกสุทธิ
Zn (s) + 2H+ (aq) ---------------> Zn2+ (aq) + H2 (g)
H+ (aq) + OH- (aq) --------------------> H2O (l)
เนื่องจากในสมการไอออนิกมีไอออนที่ไม่ทำปฏิกิริยากัน ปรากฎอยู่ทั้งด้านซ้ายและขวาของสมการ ซึ่งสามารถตัดออกจากสมการให้เหลือเฉพาะไอออนที่ทำปฏิกิริยากันได้เป็นผลิตภัณฑ์ เรียกว่า สมการไอออนิกสุทธิ (Net Ionic Equation)
การอธิบายหรือการทำนายปฏิกิริยาของการเกิดตะกอนของสารละลายของสารประกอบไอออนิกสามารถพิจารณาได้จากสมบัติการละลายน้ำ ตามหลักการเบื้องต้น
สารประกอบที่ละลายน้ำ
- สารประกอบของโลหะแอลคาไล และแอมโมเนียมทุกชนิด
- สารประกอบไนเตรต คลอเรต เปอร์คลอเรต แอซีเตต
- สารประกอบคลอไรด์ โบรไมด์ ไอโอไดด์ (Except สารประกอบของ Ag+ Pb2+ Hg ห้อย 2 2+ ไม่ละลาย PbCl ห้อย 2 ละลายได้ )
- สารประกอบซัลเฟต (Except Pb2+ Sr2+ Ba2+ สารประกอบของ Ca2+ และ Ag+ ละลายได้น้อย)
สารประกอบที่ไม่ละลายน้ำ
- สารประกอบออกไซด์ของโลหะ ( Except ออกไซด์ของโลหะแอลคาไล และออกไซด์ของ Ca2+ Sr2+ Ba2+ )
- สารประกอบไฮดรอกไซด์ ( Except ไฮดรอกไซด์และโลหะแอลคาไล แอมโมเนียม และของ Sr2+ Ba2+ ส่วนของ Ca2+ ละลายได้น้อย)
- สารประกอบคาร์บอเนต ฟอสเฟต ซัลไฟด์ และซัลไฟต์ (Except สารประกอบของแอมโมเนียมและของโลหะแอลคาไล )
พันธะโคเวเลนต์
พันธะโคเวเลนต์ คือ สารที่เกิดจากธาตุอโลหะรวมตัวกัน เช่น แก๊สออกซิเจน แก๊สไนโตรเจน และแก๊สคาร์บอนไดออกไซด์ การยึดเหนี่ยวระหว่างอะตอมของธาตุในสารเหล่านี้เป็นพันธะไอออนิก
การเกิดพันธะโคเวเลนต์
โมเลกุลของแก๊สไฮโดรเจนประกอบด้วยธาตุไฮโดรเจน 2 อะตอม ไฮโดรเจนทั้งสองอะตอมรวมกันอย่างไร ไฮโดรเจนเป็นธาตุที่มีค่า IE สูงจึงเสียอิเล็กตรอนได้ยาก เมื่อไฮโดรเจน 2 อะตอมอยู่ใกล้กันจะเกิดแรงดึงดูดระหว่างอิเล็กตรอนกับโปรตอนในนิวเคลียสของทั้งสองอะตอม จึงมีแนวโน้มสูงที่จะพบอิเล็กตรอนทั้งสองอยู่ในบริเวณระหว่างนิวเคลียสของทั้งสองอะตอม และดึงดูดให้นิวเคลียสเข้ามาใกล้กันมากขึ้น
ในขณะเดียวกันก็จะมีแรงผลักระหว่างโปรตอนกับโปรตอนและระหว่างอิเล็กตรอนกับอิเล็กตรอนของแต่ละอะตอมด้วย เมื่ออะตอมทั้งสองเข้ามาใกล้กันในระยะที่เหมาะสม อะตอมทั้งสองจะมีพลังงานต่ำสุดและอยู่รวมกันเป็นโมเลกุลโดยใช้อิเล็กตรอนร่วมกันแรงดึงดูดที่ทำให้อะตอมอยู่รวมกันได้ในลักษณะนี้เรียกว่า พันธะโคเวแลนต์ โมเลกุลของสารที่อะตอมยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์เรียกว่า โมเลกุลโคเวเลนต์ และสารที่ประกอบด้วยอะตอมที่สร้างพันธะโคเวเลนต์เรียกว่า สารโคเวเลนต์
พันธะโคเวเลนต์
พันธะโคเวเลนต์ คือ สารที่เกิดจากธาตุอโลหะรวมตัวกัน เช่น แก๊สออกซิเจน แก๊สไนโตรเจน และแก๊สคาร์บอนไดออกไซด์ การยึดเหนี่ยวระหว่างอะตอมของธาตุในสารเหล่านี้เป็นพันธะไอออนิก
การเกิดพันธะโคเวเลนต์
โมเลกุลของแก๊สไฮโดรเจนประกอบด้วยธาตุไฮโดรเจน 2 อะตอม ไฮโดรเจนทั้งสองอะตอมรวมกันอย่างไร ไฮโดรเจนเป็นธาตุที่มีค่า IE สูงจึงเสียอิเล็กตรอนได้ยาก เมื่อไฮโดรเจน 2 อะตอมอยู่ใกล้กันจะเกิดแรงดึงดูดระหว่างอิเล็กตรอนกับโปรตอนในนิวเคลียสของทั้งสองอะตอม จึงมีแนวโน้มสูงที่จะพบอิเล็กตรอนทั้งสองอยู่ในบริเวณระหว่างนิวเคลียสของทั้งสองอะตอม และดึงดูดให้นิวเคลียสเข้ามาใกล้กันมากขึ้น
ในขณะเดียวกันก็จะมีแรงผลักระหว่างโปรตอนกับโปรตอนและระหว่างอิเล็กตรอนกับอิเล็กตรอนของแต่ละอะตอมด้วย เมื่ออะตอมทั้งสองเข้ามาใกล้กันในระยะที่เหมาะสม อะตอมทั้งสองจะมีพลังงานต่ำสุดและอยู่รวมกันเป็นโมเลกุลโดยใช้อิเล็กตรอนร่วมกันแรงดึงดูดที่ทำให้อะตอมอยู่รวมกันได้ในลักษณะนี้เรียกว่า พันธะโคเวแลนต์ โมเลกุลของสารที่อะตอมยึดเหนี่ยวกันด้วยพันธะโคเวเลนต์เรียกว่า โมเลกุลโคเวเลนต์ และสารที่ประกอบด้วยอะตอมที่สร้างพันธะโคเวเลนต์เรียกว่า สารโคเวเลนต์
กราฟแสดงการเปลี่ยนแปลงพลังงานในการเกิดโมเลกุลไฮโดรเจน
ชนิดของพันธะโคเวเลนต์
นักเรียนทราบแล้วว่าเมื่ออะตอมของธาตุรวมกันเกิดเป็นสารประกอบจะทำให้แต่ละอะตอมมีเวเลนต์อิเล็กตรอนเป็น 8 ตามกฎออกเตต เช่น การรวมตัวของธาตุไฮโดรเจนกับธาตุฟลูออรีนเกิดเป็นไฮโดรเจนฟลูออไรด์ ไฮโดรเจนมีเวเลนซ์อิเล็กตรอน 1 ต้องการอีก 1 อิเล็กตรอนจึงจะครบ 2 เหมือนฮีเลียม ส่วนฟลูออรีนมีเวเลนซ์อิเล็กตรอนเท่ากับ 7 ต้องการอีก 1 อิเล็กตรอนจึงจะครบ 8 แต่ธาตุทั้งสองมีพลังงานไอออไนเซชันลำดับที่ 1 สูง แสดงว่าเสียอิเล็กตรอนได้ยาก จึงไม่มีอะตอมใดให้อิเล็กตรอน ธาตุทั้งสองจึงใช้อิเล็กตรอนร่วมกัน 1 คู่ เกิดเป็นพันธะโคเวเลนต์ชนิด พันธะ เดี่ยว อิเล็กตรอนคู่ที่ใช้ร่วมกันนี้เรียกว่า อิเล็กตรอนคู่ร่วมพันธะ
เขียนสัญลักษณ์แบบจุดของลิวอิสแสดงได้ดังตัวอย่าง
ถ้าอะตอมทั้งสองใช้อิเล็กตรอนร่วมกัน 3 คู่ พันธะที่เกิดขึ้นเรียกว่า พันธะสาม เช่น ในโมเลกุลไนโตรเจน Nห้อย2 อะเซทิลีน Cห้อย2Hห้อย 4 เขียนโครงสร้างลิวอิสแสดงได้ดังนี้
โครงสร้างลิวอิสของโมเลกุลโคเวเลนต์บางชนิด
สูตรโมเลกุลและชื่อของสารโคเวเลนต์
การเขียนสูตรโมเลกุลของสารโคเวเลนต์ กำหนดให้เขียนสัญลักษณ์ของธาตุองค์ประกอบเรียงลำดับดังนี้ B Si C P N H Se S I Br Cl O F ถ้าธาตุใดมีจำนวนอะตอมมากกว่า 1 ให้ระบุจำนวนอะตอมของธาตุนั้นไว้มุมล่างด้านขวาของสัญลักษณ์
ให้เรียกชื่อของธาตุที่อยู่ข้างหน้าก่อนแล้วตามด้วยชื่อของธาตุที่อยู่ด้านหลัง
โดยเปลี่ยนเสียงพยางค์ท้ายของธาตุเป็น-ไอด์(-ide) ดังตัวอย่างดังต่อไปนี้
ไฮโดรเจน (H) ออกเสียงเป็น ไฮไดรต์
คาร์บอน (C) ออกเสียงเป็น คาร์ไบด์
ไนโตรเจน (N) ออกเสียงเป็น ไนไตรด์
ฟลูออรีน (F) ออกเสียงเป็น ฟลูออไรด์
ลอรีน (CI) ออกเสียงเป็น คลอไรต์
ออกซิเจน (O) ออกเสียงเป็น ออกไซต์
คาร์บอน (C) ออกเสียงเป็น คาร์ไบด์
ไนโตรเจน (N) ออกเสียงเป็น ไนไตรด์
ฟลูออรีน (F) ออกเสียงเป็น ฟลูออไรด์
ลอรีน (CI) ออกเสียงเป็น คลอไรต์
ออกซิเจน (O) ออกเสียงเป็น ออกไซต์
ความยาวพันธะและพลังงานพันธะของสารโคเวเลนต์
การเกิดโมเลกุลของแก๊สไฮโดรเจนนั้น อะตอมของไฮโดรเจนจะเคลื่อนที่เข้าใกล้กันได้มากที่สุดและเกิดสมดุลระหว่างแรงดึงดูดกับแรงผลักที่ระยะ 74 พิโกเมตร ถ้าเข้าใกล้กันมากกว่านี้ แรงผลักจะเพิ่มมากขึ้นและโมเลกุลจะไม่เสถียร ระยะ 74 พิโกเมตรจึงเป็นระยะที่สั้นที่สุดที่นิวเคลียสของอะตอมทั้งสองสร้างพันธะกันในโมเลกุล ระยะนี้เรียกว่า ความยาวพันธะ ความยาวพันธะหาได้จากการศึกษาการเลี้ยวเบนรังสีเอกซ์ (X - ray diffraction) ผ่านโครงผลึกของสารหรือจากการศึกษาวิเคราะห์สเปกตรัมของโมเลกุลของสาร
ระยะห่างระหว่างนิวเคลียสที่ทำให้พลังงานศักย์รวมต่ำที่สุด เรียกว่า ความยาวพันธะ (Bond Length)
ความยาวพันธะระหว่าง O - H ในโมเลกุลของสารต่างชนิดกัน
เมื่อพิจารณาข้อมูลในตารางจะพบว่าความยาวพันธะระหว่างอะตอม O กับ H ในโมเลกุลของสารต่างชนิดกันมีค่าแตกต่างกันและแตกต่างจากข้อมูลที่สืบค้นได้คือความยาวพันธะ O-H เท่ากับ 97 พิโกเมตร เนื่องจากความยาวพันธะระหว่างอะตอมคู่หนึ่งหาได้จากค่าเฉลี่ยของความยาวพันธะระหว่างอะตอมคู่เดียวกันในโมเลกุลชนิดต่างๆ ดังนั้นเมื่อกล่าวถึงความยาวพันธะ โดยทั่วไปจึงหมายถึง ความยาวพันธะเฉลี่ย
การรวมตัวกันของไฮโดรเจนจะมีการสร้างพันธะระหว่างอะตอมเกิดเป็นโมเลกุลของแก๊สไฮโดรเจนและคายพลังงานออกมา 436
ในทางกลับกันการทำให้โมเลกุลของแก๊สไฮโดรเจนกลายเป็นไฮโดรเจนอะตอมจะต้องใช้พลังงานอย่างน้อยที่สุด 436 กิโลจูลต่อโมลดังนี้
พลังงานปริมาณน้อยที่สุดที่ใช้เพื่อสลายพันธะระหว่างอะตอมภายในโมเลกุลที่อยู่ในสถานะแก๊สให้เป็นอะตอมเดี่ยวในสถานะแก๊สเรียกว่า พลังงานพันธะ
นอกจากนี้การสลายพันธะชนิดเดียวกันในสารโคเวเลนต์ชนิดต่างๆ จะใช้พลังงานไม่เท่ากัน ดังนั้นพลังงานพันธะจึงไม่คิดจากการสลายพันธะในโมเลกุลของสารใดสารหนึ่งเท่านั้น แต่คิดเป็นค่าเฉลี่ยของพลังงานที่ต้องใช้สลายพันธะระหว่างอะตอมคู่นั้นในโมเลกุลของสารประกอบหลายชนิด ค่าพลังงานพันธะเฉลี่ยระหว่างอะตอมคู่ต่างๆ
แนวคิดเกี่ยวกับเรโซแนนซ์
โมเลกุลโคเวเลนต์บางชนิดที่มีพันธะคู่อยู่ในโมเลกุล เช่น โมเลกุลโอโซน พันธะโคเวเลนต์ที่เกิดระหว่างอะตอมของออกซิเจนกับออกซิเจนอีก 2 อะตอม ตามกฎออกเตตเขียนแสดงได้ดังนี้
จากโครงสร้างลิวอิสทั้งสองนี้แสดงว่าออกซิเจนอะตอมกลางสร้างพันธะเดี่ยวกับออกซิเจนอะตอมหนึ่งและสร้างพันธะคู่กับออกซิเจนอีกอะตอมหนึ่ง ซึ่งหมายความว่าพันธะทั้งสองในโมเลกุลนี้มีความยาวไม่เท่ากัน แต่จากการศึกษาพบว่าความยาวพันธะระหว่างอะตอมออกซิเจนทั้งสองพันธะมีค่า 128 พิโกเมตรเท่ากัน
ซึ่งเป็นค่าความยาวพันธะระหว่างพันธะเดี่ยวกับพันธะคู่ของออกซิเจนกับออกซิเจน (ความยาวพันธะของ O - O และ O = O เท่ากับ 148 และ 121 พิโกเมตรตามลำดับ) แสดงว่าพันธะทั้งสองในโมเลกุลเป็นพันธะชนิดเดียวกัน ดังนั้นโครงสร้างลิวอิส (ก) หรือ (ข) แบบใดแบบหนึ่งที่แสดงไว้ตอนแรกใช้แทนโมเลกุล Oห้อย3 ไม่ได้ จึงเขียนแทนด้วย โครงสร้างเรโซแนนซ์ ดังนี้
การที่พันธะระหว่างออกซิเจนกับออกซิเจนทั้ง 2 พันธะเหมือนกันนั้นเกิดจากการที่อิเล็กตรอน 1 คู่สร้างพันธะโคเวเลนต์ตามปกติและอิเล็กตรอน 1 คู่สร้างพันธะโคเวเลนต์ตามปกติ และอิเล็กตรอนอีก 1 คู่จะเคลื่อนที่ไปมาระหว่างอะตอมทั้งสาม อาจกล่าวได้ว่าออกซิเจนแต่ละคู่ใช้อิเล็กตรอนร่วมกัน 3/2 คู่ และเขียนแทนด้วยโครงสร้างดังต่อไปนี้
โดยเส้นประแทนคู่อิเล็กตรอนที่เคลื่อนที่ไปมา โครงสร้างเรโซแนนซ์อาจพบในโมเลกุลหรือไอออนชนิดอื่นๆ ดังตัวอย่างต่อไปนี้
ฟุลเลอรีน (fullerene)เป็นรูปหนึ่งของธาตุคาร์บอนที่มีโครงสร้างเรโซแนนซ์ พูกค้นพบในปลายปี พ.ศ. 2528 โครงสร้างของฟุลเลอรีนมีหลายแบบ แต่ที่เสถียรที่สุด คือ บักมินสเตอร์ฟุลเลอรีน(buckminsterfullerene : Cห้อย6 0 ) หรือเรียกง่ายๆ ว่า บักกับอลล์ (buckyball) ซึ่งมีพันธะระหว่างคาร์บอนอะตอมต่อเนื่องกันคล้ายรอยตะเข็บบนลูกฟุตบอล
รูปร่างโมเลกุลโคเวเลนต์
การศึกษาในเรื่องความยาวพันธะทำให้ทราบระยะห่างระหว่างนิวเคลียสของอะตอมที่สร้างพันธะในโมเลกุลแต่ความยาวพันธะไม่สามารถบอกลักษณะการจัดเรียงอะตอมในโมเลกุลแบบสามมิติหรือรูปร่างโมเลกุลได้
เพื่อให้เกิดความเข้าใจเกี่ยวกับรูปร่างโมเลกุลของโมเลกุลที่มีจำนวนอะตอมตั้งแต่ 3 อะตอมขึ้นไป ให้ศึกษาการจัดเรียงตัวของลูกโป่งแล้วนำมาอุปมาอุปไมยกับการจัดเรียงอะตอมในโมเลกุลจากการทดลอง
จากผลการทดลองจะพบว่า เมื่อผูกลูกโป่งเข้าด้วยกันลูกโป่งจะเบียดกันเองจนชี้ไปในทิศทางต่างๆ ในลักษณะเช่นเดียวกันกับในโมเลกุลโคเวเลนต์ กลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะรอบอะตอมกลางซึ่งมีประจุเหมือนกันจะผลักกันเอง ทำให้อิเล็กตรอนแต่ละคู่อยู่ห่างกันมากที่สุดเพื่อให้โมเลกุลมีพลังงานต่ำที่สุดและเกิดเสถียรภาพสูงสุด
ถ้าให้ขั้วลูกโป่งที่พันติดกันแทนตำแหน่งของอะตอมกลาง ลูกโป่งแทนกลุ่มหมอกอิเล็กตรอนคู่ร่วมพันธะ ตำแหน่งของอะตอมอื่นที่สร้างพันธะกับอะตอมกลางจะอยู่ตรงปลายของลูกโป่งแต่ละลูก เมื่อลากเส้นระหว่างอะตอมกลางกับอะตอมสร้างพันธะต่อกัน จะช่วยให้มองเห็นทิศทางและมุมระหว่างพันธะรวมทั้งรูปร่างของโมเลกุลได้อย่างชัดเจน
โมเลกุลที่อะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว
สภาพขั้วของโมเลกุลโคเวเลนต์
จากการศึกษาสารโคเวเลนต์ที่เกิดจากอะตอมชนิดเดียวกัน เช่น Hห้อย2 พบว่าอิเล็กตรอนคู่ร่วมพันธะจะกระจายอยู่รอบๆ อะตอมทั้งสองเท่ากัน พันธะที่เกิดขึ้นในลักษณะเช่นนี้เรียกว่า พันธะโคเวเลนต์ไม่มีขั้ว
แต่ในสารโคเวเลนต์ที่เกิดจากอะตอมต่างชนิดกันและมีค่าอิเล็กโทรเนกาติวิตีแตกต่างกัน เช่น HCI อิเล็กตรอนคู่ร่วมพันธะจะใช้เวลาอยู่กับอะตอม CI ซึ่งมีค่าอิเล็กโทรเนกาติวิตีมากกว่าอะตอมของ H ทำให้อะตอม CI แสดงอำนาจไฟฟ้าค่อนข้างลบ ส่วน H มีค่าอิเล็กโทรเนกาติวิตีต่ำกว่าจะแสดงอำนาจไฟฟ้าค่อนข้างบวก พันธะที่เกิดขึ้นลักษณะเช่นนี้เรียกว่า พันธะโคเวเลนต์มีขั้ว
แต่ในสารโคเวเลนต์ที่เกิดจากอะตอมต่างชนิดกันและมีค่าอิเล็กโทรเนกาติวิตีแตกต่างกัน เช่น HCI อิเล็กตรอนคู่ร่วมพันธะจะใช้เวลาอยู่กับอะตอม CI ซึ่งมีค่าอิเล็กโทรเนกาติวิตีมากกว่าอะตอมของ H ทำให้อะตอม CI แสดงอำนาจไฟฟ้าค่อนข้างลบ ส่วน H มีค่าอิเล็กโทรเนกาติวิตีต่ำกว่าจะแสดงอำนาจไฟฟ้าค่อนข้างบวก พันธะที่เกิดขึ้นลักษณะเช่นนี้เรียกว่า พันธะโคเวเลนต์มีขั้ว
พันธะโคเวเลนต์มีขั้ว
การแสดงขั้วของพันธะอาจใช้สัญลักษณ์ เดลต้า + กับอะตอมที่แสดงอำนาจไฟฟ้าค่อนข้างบวกและ เดลต้า - กับอะตะมที่แสดงอำนาจไฟฟ้าค่อนข้างลบ หรืออาจใช้เครื่องหมาย เดลต้า + โดยหัวลูกศรจะชี้ไปในทิศทางที่อะตอมแสดงอำนาจไฟฟ้าค่อนข้างลบ ส่วนท้ายลูกศรซึ่งคล้ายกับเครื่องหมายบวกจะอยู่บริเวณอะตอมที่แสดงอำนาจไฟฟ้าค่อนข้างบวก ดังนั้นขั้วของพันธะ H - CI
แรงยึดเหนี่ยวระหว่างโมเลกุลและสมบัติของสารโคเวเลนต์
สารโคเวเลนต์มีทั้งที่เป็นของแข็ง ของเหลว หรือแก๊สที่อุณหภูมิห้อง ในสถานะของแข็งอนุภาคของสารจะอยู่ชิดกันและมีแรงยึดเหนี่ยวต่อกันสูง แต่ในสถานะของเหลวอนุภาคจะอยู่ห่างกัน แรงยึดเหนี่ยวที่มีต่อกันน้อยลง และในสถานะแก๊สจะมีแรงยึดเหนี่ยวต่อกันน้อยมาก โมเลกุลของแก๊สจึงอยู่ห่างกัน เมื่อให้ความร้อนแก่สารจนถึงจุดหลอมเหลวหรือจุดเดือด อนุภาคของสารจะมีพลังงานสูงพอที่จะหลุดออกจากกันและเกิดการเปลี่ยนสถานะได้จากปริมาณความร้อนที่ใช้เพื่อการเปลี่ยนสถานะของสาร
ทำให้เราทราบว่าสารในสถานะของแข็งมีแรงยึดเหนี่ยวระหว่างอนุภาคสูงกว่าสารชนิดเดียวกันในสถานะของเหลว และสารในสถานะของเหลวมีแรงยึดเหนี่ยวระหว่างอนุภาคสูงกว่าในสถานะแก๊สดังนั้น จุดหลอมเหลวและจุดเดือดของสารจึงเป็นข้อมูลใช้พิจารณาเปรียบเทียบแรงยึดเหนี่ยวระหว่างอนุภาคของสารได้จุดหลอมเหลวและจุดเดือดของสารบางชนิด
สารเหล่านี้มีแรงยึดเหนี่ยวซึ่งกันและกันอย่างอ่อนๆ ที่เรียกว่า แรงลอนดอน แรงชนิดนี้เกิดจากการกระจายของอิเล็กตรอนในอะตอมขณะใดขณะหนึ่งซึ่งอาจไม่เท่ากันจึงทำให้เกิดเป็นโมเลกุลมีขั้วขึ้น ขั้วของโมเลกุลที่เกิดขึ้นนี้จะเหนี่ยวนำให้โมเลกุลที่อยู่ใกล้กันเกิดเป็นโมเลกุลมีขั้วขึ้นอีกและเกิดแรงดึงดูดซึ่งกันและกัน แรงลอนดอนมีค่าสูงขึ้นตามมวลโมเลกุลหรือขนาดของโมเลกุล สำหรับโมเลกุลโคเวเลนต์มีขั้วจะมีแรงกระทำระหว่างขั้วซึ่งเกิดจากอำนาจไฟฟ้าค่อนข้างบวกกับอำนาจไฟฟ้าค่อนข้างลบของโมเลกุลที่อยู่ใกล้กันเกิดเป็น แรงดึงดูดระหว่างขั้ว
นอกเหนือจากแรงลอนดอนที่มีอยู่ เป็นผลให้โมเลกุลเหล่านี้ยึดเหนี่ยวกันไว้อย่างแข็งแรง ขนาดของแรงดึงดูดระหว่างขั้วขึ้นอยู่กับความแรงของสภาพขั้วที่เพิ่มขึ้นตามความแตกต่างของอิเล็กโทรเนกาติวิตีของธาตุ แรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ทั้งแรงลอนดอนและแรงดึงดูดระหว่างขั้วรวมเรียกว่า แรงแวนเดอร์วาลส์ โดยทั่วไปเมื่อกล่าวถึงแรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์มักกล่าวถึงแรงที่สำคัญหรือแรงที่มีความแข็งแรงมากกว่า เช่น ในโมเลกุลโคเวเลนต์มีขั้วมักจะกล่าวถึงเฉพาะแรงดึงดูดระหว่างขั้วเท่านั้น แต่ไม่กล่าวถึงแรงลอนดอน
นอกจากนี้ยังมีแรงดึงดูดระหว่างขั้วอีกชนิดหนึ่ง ซึ่งมีความแข็งแรงมากและเป็นแรงยึดเหนี่ยวระหว่างโมเลกุลที่มีขนาดเล็ก แรงดังกล่าวจะเป็นแรงชนิดใดเราจะพิจารณาจากโมเลกุลของสารประกอบไฮโดรเจนแฮไลด์
การที่ HF มีแรงดึงดูดระหว่างโมเลกุลสูงกว่าไฮโดรเจนแฮไลด์อื่นๆ อธิบายได้ว่าเพราะฟลูออรีนมีขนาดอะตอมเล็กและมีอิเล็กโทรเนกาติวิตีสูงที่สุด ผลต่างของอิเล็กโทรเนกาติวิตีระหว่างไฮโดรเจนกับฟลูออรีนมีค่ามากความหนาแน่นของอิเล็กตรอนในโมเลกุลของไฮโดรเจนฟลูออไรด์จึงอยู่ทางด้านอะตอมฟลูออรีนนานกว่าเป็นผลให้ด้านนี้มีอำนาจไฟฟ้าค่อนข้างลบสูง ส่วนไฮโดรเจนมีอำนาจไฟฟ้าค่อนข้างบวกสูง ด้วยเหตุนี้โมเลกุลจึงมีสภาพขั้วสูงมากทำให้แรงดึงดูดระหว่างโมเลกุลของไฮโดรเจนฟลูออไรด์ด้วยกันเองมีค่าสูงมาก แรงยึดเหนี่ยวระหว่างโมเลกุลที่เกิดจากอะตอมไฮโดรเจนกับอะตอมของธาตุที่มีขนาดเล็กและมีอิเล็กโทรเนกาติวิตีสูงเช่นนี้เรียกว่า พันธะไฮโดรเจน
สารโคเวเลนต์โครงร่างตาข่าย
สารโคเวเลนต์ที่ศึกษามาแล้วมีโครงสร้างโมเลกุลขนาดเล็ก มีจุดหลอมเหลวและจุดเดือดต่ำ แต่มีสารโคเวเลนต์บางชนิดมีโครงสร้างโมเลกุลขนาดยักษ์ มีจุดหลอมเหลวและจุดเดือดสูงมาก เนื่องจากอะตอมสร้างพันธะโคเวเลนต์ยึดเหนี่ยวกันทั้งสามมิติเกิดเป็นโครงสร้างคล้ายตาข่าย สารประกอบนี้เรียกว่า สารโครงผลึกร่างตาข่าย ตัวอย่างสารโครงผลึกร่างตาข่าย เช่น
เพชร
เพชรเป็นอัญรูปหนึ่งของคาร์บอนและเป็นผลึกโคเวเลนต์ ในโครงสร้างเพชร คาร์บอนแต่ละอะตอมใช้เวเลนต์อิเล็กตรอนทั้งหมดสร้างพันธะโคเวเลนต์กับอะตอมอีก 4 อะตอมที่อยู่ล้อมรอย เพชรจึงไม่นำไฟฟ้า มีความยาวพันธะ C - C 154 พิโกเมตร การจัดอะตอมในผลึกเพชรคล้ายตาข่ายโยงกันทั้ง 3 มิติ เป็นผลให้อะตอมของคาร์บอนยึดกันไว้แน่น เพชรจึงมีความแข็งแรงสูงที่สุด มีจุดหลอมเหลวสูงถึง 3550 และมีจุดเดือดสูงมากถึง 4830 แบบจำลองโครงสร้างของเพชรเป็นดังรูป
แกรไฟต์
แกรไฟต์เป็นผลึกโคเวเลนต์และเป็นอีกอัญรูปหนึ่งของคาร์บอนแต่มีโครงสร้างแตกต่างจากเพชร กล่าวคืออะตอมของคาร์บอนจัดเรียงตัวเป็นชั้นๆ และสร้างพันธะโคเวเลนต์ต่อกันเป็นวง วงละ 6 อะตอมต่อเนื่องกันอยู่ภายในระนาบเดียวกัน พันธะระหว่างอะตอมของคาร์บอนที่อยู่ในชั้นเดียวกันมีความยาว 140 พิโกเมตร แต่จากข้อมูลโดยทั่วไปพบว่าพันธะเดี่ยวระหว่างอะตอมของคาร์บอน (C - C)
มีความยาว 154 พิโกเมตร และพันธะคู่ระหว่างอะตอมของคาร์บอน (C = C) มีความยาว 134 พิโกเมตร แสดงว่าอะตอมของคาร์บอนในชั้นเดียวกันของแกรไฟต์ยึดเหนี่ยวกันด้วยพันธะที่มีความยาวอยู่ระหว่างพันธะเดี่ยวกับพันธะคู่ ส่วนอะตอมของคาร์บอนในแต่ละชั้นอยู่ห่างกัน 340 พิโกเมตรการจัดอะตอมเป็นโครงผลึกร่างตาข่ายนี้ส่งผลให้อะตอมของคาร์บอนยึดกันไว้แน่น ทำให้แกรไฟต์มีจุดหลอมเหลวและจุดเดือดสูง
ซิลิคอนไดออกไซด์ หรือซิลิกา
ซิลิคอนไดออกไซด์เป็นผลึกโคเวเลนต์มีโครงสร้างเป็นผลึกร่างตาข่าย อะตอมของซิลิคอนจัดเรียงตัวเหมือนกับคาร์บอนในผลึกเพชร แต่มีออกซิเจนคั่นอยู่ระหว่างอะตอมของซิลิคอนแต่ละคู่ ผลึกซิลิคอนไดออกไซด์จึงมีจุดหลอมเหลวสูงถึง 1730 และมีความแข็งสูง ในธรรมชาติพบซิลิคอนไดออกไซด์ได้หลายรูป เช่น ควอตซ์ ไตรดีไมต์ และคริสโตบาไลต์ ใช้เป็นวัตถุดิบในการทำแก้ว ทำส่วนประกอบของนาฬิกาควอตซ์ ใยแก้วนำแสง (optical fiber) แบบจำลองโครงสร้างของ SiOห้อย2 แสดงได้ดังรูป
พันธะโลหะ
โลหะบางชนิด เช่น ทองแดง เหล็ก อะลูมิเนียม มีสมบัติบางประการคล้ายกันแสดงว่าสารเหล่านี้มีการยึดเหนี่ยวระหว่างอนุภาคที่เหมือนกัน แล้วอะตอมของธาตุโลหะสร้างพันธะเคมีระหว่างกันอย่างไร เหมือนหรือต่างจากพันธะไอออนิกและพันธะโคเวเลนต์หรือไม่
การเกิดพันธะโลหะ
1. โลหะมีค่าพลังงานไอออไนเซชั่นต่ำมาก แสดงว่าอิเลคตรอนของโลหะจะหลุดออกไปได้ง่าย เมื่อเวเลนซ์อิเลคตรอนหลุดออกไป ก็จะเหลืออนุภาคบวกอะตอมโลหะทุกอะตอมจะเป็นตัวให้อิเลคตรอนทั้งสิ้นดังนั้นจะไม่มีอะตอมใดเลยที่ได้รับอิเลคตรอน
2. โลหะมีเวเลนซ์อิเลคตรอนน้อย ดังนั้นอิเลคตรอนที่หลุดออกไป จะมีเพียง 1, 2 หรือ 3 ตัวต่อ
อะตอม เท่านั้น
3. โลหะมีค่าโคออร์ดิเนชั่นนัมเบอร์สูง ซึ่งเท่ากับ 8 หรือ 12 หมายความว่า อะตอมหนึ่งจะมีอะตอมอื่นรอบล้อม 8 ถึง 12 อะตอม ดังนั้นการนำอิเลคตรอนมาใช้ร่วมกันเป็นอิเลคตรอนคู่ในลักษณะของพันธะโคเวเลนท์จึงเป็นไปไม่ได้
ดังนั้นการเกิดพันธะโลหะควรเป็นไปในลักษณณะที่ว่า เวเลนซ์อิเลคตรอนของอะตอมโลหะที่หลุดออกไปจะไม่เป็นของอะตอมใดอะตอมหนึ่งโดยเฉพาะ แต่จะเป็นของอะตอมทั้งหมด โดยที่อิเลคตรอนจะเคลื่อนที่ไปยังอะตอมนี้บ้าง อะตอมโน้นบ้าง ในผลึกของโลหะจึงเป็นการเอาอนุภาคบวกมาเรียงกันไว้อย่างมีระเบียบ และมีเวเลนซ์อิเลคตรอนเคลื่อนที่ไปมาได้ทั่วอนุภาคบวกเหล่านั้นเหมือนกับเป็นหมอกปกคลุมอนุภาคบวกทั้งหมด
แรงดึงดูดระหว่างอนุภาคบวกกับอิเลคตรอนเรียกว่า "พันธะโลหะ" (Metallic Bond) ซึ่งมีแรงยึดเหนี่ยวระหว่างพันธะแข็งแรงมาก
การเกิดพันธะโลหะอาจแสดงได้ด้วยแบบจำลองทะเลอิเล็กตรอน (Electron Sea Model)
สมบัติของโลหะ
1. โลหะเป็นตัวนำไฟฟ้าที่ดี เพราะอิเล็กตรอนเคลื่อนที่ได้ง่าย
2. โลหะมีจุดหลอมเหลวสูง เพราะเวเลนต์อิเล็กตรอนของอะตอมทั้งหมดในก้อนโลหะยึดอะตอมไว้อย่างเหนียวแน่น
3. โลหะสามารถตีแผ่เป็นแผ่นบางๆได้ เพราะมีกลุ่มเวเลนต์อิเล็กตรอนทำหน้าที่ยึดอนุภาคให้เรียงกันไม่ขาดออกจากกัน
4. โลหะมีผิวเป็นมันวาว เพราะกลุ่มอิเล็กตรอนที่เคลื่อนที่โดยอิสระมีปฏิกิริยาต่อแสง จึงสะท้อนแสงทำให้มองเห็นเป็นมันวาว
5. สถานะปกติเป็นของแข็ง ยกเว้น Hg เป็นของเหลว
6. โลหะนำความร้อนได้ดี เพราะอิเล็กตรอนอิสระเคลื่อนที่ได้ทุกทิศทาง
2. โลหะมีจุดหลอมเหลวสูง เพราะเวเลนต์อิเล็กตรอนของอะตอมทั้งหมดในก้อนโลหะยึดอะตอมไว้อย่างเหนียวแน่น
3. โลหะสามารถตีแผ่เป็นแผ่นบางๆได้ เพราะมีกลุ่มเวเลนต์อิเล็กตรอนทำหน้าที่ยึดอนุภาคให้เรียงกันไม่ขาดออกจากกัน
4. โลหะมีผิวเป็นมันวาว เพราะกลุ่มอิเล็กตรอนที่เคลื่อนที่โดยอิสระมีปฏิกิริยาต่อแสง จึงสะท้อนแสงทำให้มองเห็นเป็นมันวาว
5. สถานะปกติเป็นของแข็ง ยกเว้น Hg เป็นของเหลว
6. โลหะนำความร้อนได้ดี เพราะอิเล็กตรอนอิสระเคลื่อนที่ได้ทุกทิศทาง
การใช้ประโยชน์ของสารประกอบไอออนิก สารโคเวเลนต์ และโลหะ
ที่มา http://www.vcharkarn.com
ไม่มีความคิดเห็น:
แสดงความคิดเห็น